Dougherty Valley HS Chemistry Kinetics – Rate Expressions and Average Rates

Name:

	ЛС
vvorksneet	TT_

Period:

Seat#:

Conceptual Questions

1)	A study of reaction is called chemical) What are the FOUR major factors that afferrate?	ct reaction
3)	Reaction rate refers to how quickly or slowly the _	disappear and the	
	appear. It is measured in terms	f the of the reactants.	
4)	Write a generic equation for Reaction Rate) Why would a mixture of gases react faster volume they occupy is decreased?	when the
6)	Why would iron filings rust faster than an iron nail?) What is meant by the rate-determining step)?
8)	How would the increasing of partial pressure of reactive components of a gaseous mixture affect the rate at which the components react with one another?	What information is needed to relate the ra disappearance of reactants to the rate of a of products? (Hint: Chemical equation)	te of opearance
10)	How would you change temperature of a reaction if you wanted to increase the rate of reaction? Explain how this effects the reaction using the collision theory.	1) Why would the rate of reaction decrease as reaction produces more products?	s the
12)	If you put 100g of NaOH in cube form and 200g of NaOH in powered form which will react with HCI at a faster rate? Explain why	3) What is the activation energy? In other wor two things is the Activation Energy being us	ds, what sed for?

14) What is a catalyst and why is it different from a reactant in an equation?	15) In the following three step reaction, which step is the fastest? Which step is the slowest?	Products Reaction Progress	
16) Draw an exothermic reaction graph shown with	and without a catalyst		
	-		
17) Write the rate expression for $2H_2O \rightarrow 2H_2 + O_2$			
18) Write the rate expression for $2SO_2 + O_2 \rightarrow 2SO_2$	3		
10) Write the rate expression for $2NO + 2H \rightarrow N + 2H O$			
13 while the face expression for $2NO + 2n_2 = N_2 + 2n_2O$			

Mathematical Questions

- Show all work involved.
- Get an actual answer when applicable, including units! Box your answer!

20) The following the <i>Zn</i> during the	table relates the <i>time</i> and the <i>mass of</i> reaction between Zn and 0.5M HNO ₃ :	a) Calculate the rxn rate, in g/s, from 0s to 60 s.
Zn _(s) + 2HNo	$O_{3(aq)} \rightarrow H_{2(g)} + Zn(NO_3)_{2(aq)}$	
Time	Mass of Zn (g)	
0.0 s	36.2 g	b) Calculate the rxn rate in q/s from 120s to 180 s
60.0 s	29.6 g	
120.0 s	25.0 g	
180.0 s	22.0 g	

Dougherty Valley HS Chemistry Kinetics – Rate Expressions and Average Rates

21) A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is:			a) Calculate the Rate of Reaction in grams of Zn consumed per second.				
$Zn_{(s)} + 2HCI_{(aq)} \rightarrow H_{2(g)} + ZnCI_{2(aq)}$ A piece of zinc is dropped into 1.00 L of 0.100 M HCl and the following data were obtained:							
T 0 4 8 1 1 2	TimeMass of Zinc (g)0 s0.016 g4 s0.014 g8 s0.012 g12 s0.010 g16 s0.008 g20 s0.006 g		b) Calculate the Rate of Reaction in moles of <i>Zn</i> consumed per second.				
22) Solid phosphorus and oxygen gas react to form tetraphosphorus decoxide. Determine the average rate of reaction for oxygen during the first 40 s if the concentration changes from 0.200 mol/L to 0.0001 mol/L during this time interval.							
23) At 40°C, hydrogen chloride gas will form from the reaction of gaseous hydrogen and chlorine, according to the following balanced chemical equation: $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g).$			a)	hydrogen chloride gas in the first 4.32 s			
		Conce	entration	(mol/L)			
	Time (s)	H ₂ (g)	Cl ₂ (g)	HCI (g)		b) (chlorine gas between 2.16 s & 4.32 s
	0	1.000	1.000	0.000			
	2.16	0.500	0.500	1.000			
	4.32	0.250	0.250	1.500			
Using the data provided, calculate the following average rates: a) hydrogen gas in the first 2.16 s.				d, ge rates:	c)	hydrogen gas in the first 4.32 s	

Dougherty Valley HS Chemistry Kinetics – Rate Expressions and Average Rates

